
Kubernetes device plug-in for IBM Crypto
Express (CEX) cards
Version 1.1.0

Installation and User Guide

IBM

Contents

Figures... iv
Release Notes... 5

Version 1.0... 5
Features.. 5

Version 1.0.2.. 5
Features.. 5
Resolved issues.. 5

Version 1.1.0.. 5
Features.. 5
Resolved issues.. 6

Known issues... 6
Inclusive language ..7
Introduction ... 8

Overview ..8
Setting up the environment for the CEX device plug-in ... 9

CEX resources on IBM Z and LinuxONE ..9
Getting started with the CEX device plug-in ...11

Creating and establishing a CEX resource configuration map ...11
Considerations for equally configured APQNs ..11
Basic parameters ...12
APQN parameters ..12
Establishing the CEX resource configuration map ..13

Installing and Configuring the CEX device plug-in .. 14
Obtaining the CEX device plug-in ... 14
Installing the CEX device plug-in ..14
Updating an Installation ... 14
Installing the CEX device plug-in in details ..15
Further details on the CEX device plug-in ..15

Allocation of CEX resources by containers ... 17
Frequently asked questions.. 17

Technical Concepts and Limitations ...19
CEX configuration ConfigMap updates ... 19
Overcommitment of CEX resources ... 19
The device node z90crypt ...20
The shadow sysfs ..20
Hot plug and hot unplug of APQNs ...21
SELinux and the Init Container ... 21
Limitations ...22

Namespaces and the project field .. 22
Prometheus Support..23

Details about the Prometheus support... 24
Setting up the Prometheus support for the CEX device plug-in...25
Sample Prometheus use cases for the CEX resources... 25

Troubleshooting ..28
Prerequisites.. 28
Verification... 28
Capturing debug data for support .. 31

Migrating from kube-system to cex-device-plugin namespace32

ii

Migration details.. 32
Migration sequence... 32

Appendix ..33
Sample CEX resource configuration map ...33
Sample CEX device plug-in daemonset yaml ...34
Sample CEX crypto load container ... 35
Sample CEX quota restriction script ...36
Sample CEX Prometheus exporter yaml .. 36
Sample CEX Prometheus exporter collector service yaml .. 37
Sample CEX Prometheus exporter servicemonitor yaml ...37
Sample CEX Prometheus exporter service yaml ..37
Environment variables .. 38

Environment variables recognized by the CEX plug-in application ... 38
Environment variables recognized by the CEX Pometheus exporter application 39

Additional resources ... 40

Notices ... 41
Trademarks ... 42
Terms and conditions for product documentation ...43

 iii

Figures

1. Plug-in and Exporter... 24

2. cex_plugin_total_request_counter.. 26

3. rate cex_plugin_request_counter.. 26

4. rate cex_plugin_plugindevs_used..27

5. utilisation cex_plugin_plugindevs.. 27

iv

Release Notes

Version 1.0
Version 1.0 of the Kubernetes device plug-in for IBM Crypto Express (CEX) cards is the initial release of
this plug-in. It provides containerized applications access to IBM Crypto Express (CEX) cards on IBM Z®

and IBM® LinuxONE (s390).

Features
The following features are included in the initial release:

• Enable CEX cards for pods
• Configure available crypto sets by using a ConfigMap
• Static copy of the sysfs for the pod
• Overcommitment of CEX Resources
• Hot plug and hot unplug of APQNS

Version 1.0.2
Version 1.0.2 of the Kubernetes device plug-in for IBM Crypto Express (CEX) cards contains one new
feature and one bug fix.

Features
This update includes one new feature:

• The OVERCOMMIT limit can be specified per configset with an overcommit: field.

Resolved issues
• The code has been rebuilt with updated libraries because of a CVE finding in the protobuf package:

– https://nvd.nist.gov/vuln/detail/CVE-2021-3121
– http://github.com/gogo/protobuf.

Version 1.1.0
Version 1.1.0 of the Kubernetes device plug-in for IBM Crypto Express (CEX) cards includes the
exploration of Prometheus metrics around the crypto resources managed by the plug-in. This release
adds support for Red Hat OpenShift Container Platform (RHOCP) with enforced Security Context
Constraints (SCC). By default the CEX device plug-in now installs into it's own namespace cex-device-
plugin and all the deployments have been rearranged for Kustomize support to make it easier to create
and update the CEX device plug-in entities.

Features
• Prometheus metrics support
• New namespace 'cex-device-plugin' (See Migrating from kube-system to cex-device-plugin Namespace)
• Enabled for RHOCP with enforced SCC support
• Kustomize support

© Copyright IBM Corp. 2022, 2024 5

https://nvd.nist.gov/vuln/detail/CVE-2021-3121
http://github.com/gogo/protobuf

Resolved issues
The code has been rebuilt with updated libraries because of CVE findings in libraries the CEX device
plug-in depends on:

• CVE-2022-3172 (Medium) in k8s.io/apiMachinery-v0.20.4
• CVE-2022-21698 (High) in github.com/prometheus/client_goLang-v1.11.0
• CVE-2022-32149 (High) in golang.org/x/text-v0.3.4

Known issues
There are no known issues. See Limitations for the list of current limitations.

6 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Inclusive language

While IBM values the use of inclusive language, terms that are outside of IBM's direct influence are
sometimes required for the sake of maintaining user understanding. As other industry leaders join IBM in
embracing the use of inclusive language, IBM will continue to update the documentation to reflect those
changes.

To learn more about this initiative, read the Words matter blog on ibm.com.

© Copyright IBM Corp. 2022, 2024 7

https://www.ibm.com/blogs/think/2020/08/words-matter-driving-thoughtful-change-toward-inclusive-language-in-technology/

Introduction

This Kubernetes device plug-in provides access to IBM Crypto Express (CEX) cards for containers running
on IBM Z and LinuxONE. Throughout this publication, the term 'CEX device plug-in' is used to refer to this
Kubernetes device plug-in.

Overview
The Kubernetes CEX device plug-in provides IBM Crypto Express cards to be made available on
Kubernetes nodes for use by containers.

The CEX device plug-in groups the available CEX resources (APQNs) into CEX config sets. Containers can
request one resource from one CEX config set. Thus, from a container perspective, the APQNs within one
CEX config set should be equivalent, which means that each APQN can be used interchangeably for any
crypto workload.

See Considerations for equally configured APQNs for details.

The CEX config sets are described in a cluster-wide ConfigMap, which is maintained by the cluster
administrator.

The CEX device plug-in instances running on all compute nodes:

• Check if the existing crypto resources are available on the nodes.
• Handle CEX resource allocation requests from the containers.
• Claim the resource.
• Ensure containers are scheduled on the correct compute node with the requested CEX crypto

resources.

The CEX device plug-in instances running on each compute node:

• Screen all the available CEX resources on the compute node and provide this information to the
Kubernetes infrastructure service.

• Allocate and deallocate a CEX resource on request of the Kubernetes infrastructure based on the
requirement of a pod asking for CEX support.

The application container only has to specify that it needs a CEX resource from a specific CEX config set
with a Kubernetes resource limit declaration. The cluster system and the CEX device plug-in handle the
details, claim a CEX resource, and schedule the pod on the correct compute node.

The following sections provide more information about CEX resources on IBM Z and LinuxONE, the
CEX device plug-in details, the CEX crypto configuration as CEX config sets in a cluster, and application
container handling details.

8 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Setting up the environment for the CEX device plug-in

CEX resources on IBM Z and LinuxONE
IBM Z and LinuxONE machines can have multiple Crypto Express cards (CEX) plugged in. The CEX device
plug-in supports Crypto Express generations CEX4 to CEX7. For each card, a mode of operation must be
chosen: Accelerator mode, CCA mode, or EP11 mode.

Each card is logically partitioned into independent units, so called crypto domains, which represent
independent Hardware Security Modules (HSMs). These independent units within a card share the same
mode of operation and the same card generation.

Thus, one HSM unit can be addressed with the adapter number (the crypto card number within a
machine) and the domain number (the crypto partition index). Both values must be numeric in the range
0-255. They act as a link to one HSM unit and are called an "APQN".

An LPAR within an IBM Z or LinuxONE machine can have one or more crypto cards assigned and one or
more domains. This results in a 2-dimensional table of APQNs.

The Kubernetes cluster is implemented as a KVM host running on an LPAR. The control plane and
compute nodes of the cluster are represented by KVM guests running at and controlled by the KVM host.
Therefore, some or all of the crypto resources available on the LPAR must be provided for use by the KVM
guests running as Kubernetes compute nodes.

The point of view for a KVM guest running as a Kubernetes compute node is similar to the view of the
LPAR. A compute node might have zero or more crypto adapters assigned and zero or more domains,
which can be seen as a 2-dimensional table of APQNs.

This documentation does not cover the assignment and distribution of crypto resources to LPARs, KVM
hosts, and KVM guests. For details, see:

• Section 10.1.3 "Configuring Crypto Express7S" in the IBM Redbook IBM z15 Configuration Setup
• Configuring Crypto Express Adapters for KVM Guests

For more information on Crypto Express cards, generations, and operation modes see:

• https://www.ibm.com/security/cryptocards

Usually the adapter/domain pair is sufficient to identify an APQN. However, if the compute nodes of
a cluster are distributed over multiple IBM Z or LinuxONE machines a unique machine identification
(machine-id) is needed in addition to the adapter and domain information.

An HSM contains a secret which must not get exposed to anyone. The secret, and potential additional
settings of the HSM, are maintained by the Security Administrator of the system. These settings are
typically done out-of-band, are properly maintained, and relatively static. On IBM Z and LinuxONE
everything regarding crypto cards is typically done by the Security Administrator with the help of a Trusted
Key Entry (TKE) workstation. For details, see the IBM Redbook System Z Crypto and TKE Update.

The secret is usually the source of a secret key often referred to as the master key or master wrapping
key. Applications working with the HSM use secure key objects, which are clear key values encrypted
("wrapped") by the master key. Such a secure key can only be used together with the HSM as only the
HSM has the master key to unwrap the secure key blob during a cryptographic operation.

A CEX crypto card in EP11 mode contains one wrapping key. A crypto domain on a CCA coprocessor card
contains up to four master keys, which can be of type DES, AES, RSA, and ECC. Each of these master keys
can wrap any type of clear key into a secure key. A CEX card in accelerator mode does not contain any
secrets and can only be used to accelerate RSA clear key operations.

Multiple HSMs can be set up by the security administrator to be used as a backup for each other. Thus,
the master keys and additional settings can be equal. Equal in this context means that an application
using secure key methods can fulfill the job with either one of these HSMs, which form an equivalence set.

© Copyright IBM Corp. 2022, 2024 9

https://www.redbooks.ibm.com/abstracts/sg248860.html
https://www.ibm.com/docs/en/linux-on-systems?topic=kvm-configuring-crypto-express-adapters-guests
https://www.redbooks.ibm.com/abstracts/sg247848.html

Spreading these equal APQNs among the compute nodes allows the Kubernetes dispatching algorithm
to choose the target node of a crypto load. The algorithm is based on criteria like CPU and memory
requirements and the availability of crypto resources.

In version 1 of the CEX device plug-in, a container should not change the configuration, master key, and
control points of the HSM resources. Also any changes to crypto resources (mode, master keys, control
points) should be performed while the affected APQNs are not available for use within the cluster.

10 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Getting started with the CEX device plug-in

Creating and establishing a CEX resource configuration map
The CEX device plug-in needs to know a valid CEX configuration to start up properly. This section deals
with creating a CEX resource configuration.

In the CEX resource configuration, equivalent APQNs are grouped into equivalence sets, called crypto
config sets. A crypto config set has a unique name and comprises of one or more equivalent APQNs. A pod
with a crypto application requests a CEX resource by requesting the allocation of one arbitrary APQN from
the crypto config set by the name of the crypto config set.

Considerations for equally configured APQNs
Within each config set, all the APQNs must be set up consistently. For each CEX mode, consider:

• For Common Cryptographic Architecture (CCA) CEX resources, the master keys and access control point
settings should be equal.

• For EP11 CEX resources, the EP11 wrapping key and control settings should be equal.
• CEX accelerator resources are stateless and do not need any equal setup.

A container requests exactly one crypto config set and obtains one CEX crypto resource from the CEX
device plug-in if an APQN is available, healthy, and not already allocated. The APQN is randomly chosen
and is assigned to the container.

The cluster-wide configuration of the CEX crypto resources is kept in a Kubernetes ConfigMap within
the same namespace as the device plug-in. If the Kustomize base deployment provided in git repository
is used, the namespace is called cex-device-plugin. The name of the ConfigMap must be cex-
resources-config and the content is a configuration file section in JSON format.

A working sample is provided in the appendix Sample CEX resource configuration map.

The following example shows only the head and some possibly crypto config set definitions:

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cex-resources-config
 namespace: cex-device-plugin
 data:
 cex_resources.json: |
 {
 "cryptoconfigsets":
 [
 {
 "setname": "CCA_for_customer_1",
 "project": "customer-1",
 "cexmode": "cca",
 "apqns":
 [
 {
 "adapter": 1,
 "domain": 6,
 "machineid": ""
 },
 {
 "adapter": 2,
 "domain": 6,
 "machineid": ""
 },
 {
 "adapter": 7,
 "domain": 6,
 "machineid": ""
 }

© Copyright IBM Corp. 2022, 2024 11

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

]
 },

The ConfigMap defines a list of configuration sets. Each configuration set comprises the following
entries:

Basic parameters
• setname: required, can be any string value, must be unique within all the configuration sets. This is the
identifier used by the container to request one of the CEX crypto resources from within the set.

• project: required, can be any string value, namespace of the configuration set. Only containers with
matching namespace can access CEX crypto resources of the configuration set. For version 1 this is not
fully implemented as there are limits on the existing API preventing this. For details, see: Limitations.

• cexmode: optional, specifies the CEX mode. If specified, one of the following choices is required: ep11,
cca, or accel. Adds an extra verification step every time the APQNs on each node are screened by
the CEX device plug-in. All APQNs of the configuration set must match the specified CEX mode. On
mismatches, the CEX device plug-in creates a log entry and discards the use of this APQN for the
configuration set.

• mincexgen: optional, specifies the minimum CEX card generation for the configuation set. If specified,
must match to cex[4-9]. Adds an extra verification step every time the APQNs on each compute node
are screened. All APQNs of the configuration set are checked to have at least the specified CEX card
generation. On mismatches, the CEX device plug-in creates a log entry and discards the use of the
APQN for the configuration set.

• overcommit: optional, specifies the overcommit limit for resources in this ConfigSet. If the
parameter is omitted, it defaults to the value specified through the environment variable
APQN_OVERCOMMIT_LIMIT. If the environment variable is not specified, the default value for
overcommit is 1 (no overcommit).

APQN parameters
• apqns: A list of equivalent APQN entries. The exact meaning of equivalent depends on the crypto

workload to be run with the crypto config set. However, it forms a set of APQNs where anyone is
sufficient to fulfill the needs of the requesting crypto workload container. See Considerations for equally
configured APQNs.

For example, a CCA application that uses a given AES secure key always relies on APQNs with a master
key that wraps this secure key, regardless on which container it runs. In other words the master key
setup of the APQNs within a ConfigSet should be the same.

An APQN must not be member of more than one crypto config set. It is valid to provide an empty list. It
is also valid to provide APQNs, which might currently not exist but might come into existence sometime
in future when new crypto cards are plugged.

The most simple APQN entry comprises these two fields:

– adapter: required, the CEX card number. Can be in the range of 0-255. Typically referred to as
adapter number.

– domain: required, the domain on the adapter. Can be in the range of 0-255.

The tuple of these two numbers uniquely identifies an APQN within one hardware instance. If the
compute nodes are distributed over more than one hardware instance, an extra entry is needed to
distinguish an APQN(a,d) on hardware instance 1 from APQN(a,d) on hardware instance 2:

– machineid: optional, is only required when the compute nodes are physically located on different
hardware instances and the APQN pairs (adapter, domain) are not unique. If specified, the value must
be entered as follows: <manufacturer>-<machinetype>-<sequencecode> with

- <manufacturer> – value of the Manufacturer line from /proc/sysinfo
- <machinetype> – value of the Type line from /proc/sysinfo

12 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

- <sequencecode> – value of the Sequence Code line from /proc/sysinfo

For example, a valid value for machineid is IBM-3906-00000000000829E7.

The tuple (a,d) gets extended with the machine id, which is unique per hardware instance and the
triple (a,d,maschineid) identifies an APQN again uniquely within the hardware instances.

Establishing the CEX resource configuration map
The CEX resource configuration map is a Kubernetes ConfigMap named cex-resources-config in
the same Kubernetes namespace as the CEX device plug-in.

The CEX plug-in git repository contains a Kustomize base deployment that generates a configuration map
from a given cex_resources.json file.

1. Download the repository and go to the deployments/configmap folder.
2. Edit the cex_resources.json JSON file in the deployments/configmap folder with your favorite

editor.
3. To verify via pretty-print that you made valid JSON entries without errors, run the following command:
jq -r . cex_resources.json If you see error messages, you need to fix them before continuing
to the next step.

4. To create the configurtion map, run the following command: oc create -k . To update an already
existing config map, run the following command: oc apply -k .

Getting started with the CEX device plug-in 13

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

Installing and Configuring the CEX device plug-in

Obtaining the CEX device plug-in
The sources of the CEX device plug-in are located on github:

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

• To use the certified and supported image from the Red Hat registry, run:

podman pull registry.connect.redhat.com/ibm/ibm-cex-device-plugin-
cm:<version>

• To use the community version, run:

podman pull quay.io/ibm/ibm-cex-plugin-cm:<version>

The CEX device plug-in comprises several Golang source files that are built into one static binary, which
is embedded into a container image. A sample Dockerfile is provided in the git repository to build the Go
code and package the binary into a container image.

Next the container image needs to pushed into the image repository of your Kubernetes cluster. This
step highly depends on the actual cluster and the cluster configuration and thus is not covered in this
documentation.

Installing the CEX device plug-in
For installation of the CEX device plug-in, a set of Kustomize overlays is provided in the deployments
directory of the repository. The source tree contains overlays for installation on Red Hat OpenShift
Container Platform in the following directories:

• rhocp-create a configmap
• rhocp-update an overlay to update the installation without touching an existing configmap
• configmap an overlay to only update or create a configmap

OpenShift Container Platform including a configmap (directory rhocp-create), an overlay to update the
installation without touching a (possibly existing) configmap (directory rhocp-update), and an overlay
to only update or create a configmap (directory configmap). See the getting started documentation for
details on the configuration.

To install the CEX device plug-in via these overlays with an empty configmap, run the following command:

oc create -k deployments/rhocp-create

By default, this deploys an empty configuration map. For example, it results in a CEX device plug-
in that will not provide any devices. To directly create a custom configuration map, edit the file
cex_resources.json in the deployments/configmap directory before running the above command.
See Getting started with the CEX device plug-in for details.

Updating an Installation
If a configuration already exists in the cex-device-plugin namespace, it should not be overwritten by
the installation script. To only update the CEX device plug-in, run the following command:

oc apply -k deployments/rhocp-update

This will update the cluster to the latest version of the CEX device plug-in without changing the existing
configuration.

14 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

Installing the CEX device plug-in in details
The CEX device plug-in container image needs to be run privileged on each compute node. Kubernetes
uses the concept of a DaemonSet for this kind of cluster-wide service. The git repository provides
kustomize-based deployments for installation on Red Hat OpenShift Container Platform (directory
deployments/rhcop-create).

To successfully run the CEX device plug-in the daemonset yaml, consider:

• namespace: The CEX device plug-in instances need to run in the same namespace where the CEX
ConfigMap resides.

• securityContext: Must be privileged because the plug-in code needs access to some directories and
files on the compute node:

– To establish an IPC connection to the kubelet.
– To do administrative tasks. For example, create and destroy zcrypt additional device nodes.
– To build and provide directory trees to be mounted into the client containers. For example, shadow

sysfs.
• volumes: The plug-in needs some volumes from the compute node:

– /dev and /sys are needed to access the zcrypt device node and to add and remove zcrypt additional
device nodes to be used by the crypto load containers.

– The device-plug-in API provided by Kubernetes is accessed via gRPC, which needs the
directory /var/lib/kubelet/device-plugins.

– The CEX ConfigMap is accessed as a volume, which provides one file cex_resources.json where
the cluster-wide CEX configuration is stored.

– Access to /var/tmp is needed to build up the sysfs overlay directories for each container that uses
crypto resources. For details on sysfs overlay see: The shadow sysfs.

• InitContainer: These commands set the appropriate SELinux labels for the shadow sysfs directory.
Required only for nodes that are enabled for SELinux.

• serviceAccount and serviceAccountName should point to the account running the containers in
the pods. This account requires on a few privileges:

– It requires get, list, and watch access to pods to keep track of pods using devices provided by the
plugin.

– It requires get, list, and watch access to configmaps to be able to update its own configuration.
– It also requires use access to the privileged SCC. This part is specific to RHOCP.

After obtaining the CEX device plug-in deployment files you should screen and maybe update the plug-in
image source registry and then apply it with the following command:

oc create -k <kustomize_directory>

Here, <kustomize_directory> is the path to the desired directory you want to use.

A few seconds later a pod whose name starts with 'cex-plugin' in namespace cex-device-plugin
should run on every compute node.

Further details on the CEX device plug-in
A CEX device plug-in instance is an ordinary application built from Golang code. The application provides
a lot of information about what is going on via stdout/stderr. You can generate the output with the
kubectl logs <pod> command, which should contain the namespace -n cex-device-plugin
option.

The CEX device plug-in application initially screens all the available APQNS on the compute node, then
reads in the CEX configuration. After verifying the CEX configuration, a Kubernetes device-plug-in with the

Installing and Configuring the CEX device plug-in 15

name of the config set is registered for each config set. This results in one device plug-in registration per
config set with the full name cex.s390.ibm.com/\<config-set-name\>.

• For details about Kubernetes device plug-in's see: https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/device-plugins/

• For details about the Device Plugin Manager (dpm) see: https://pkg.go.dev/github.com/kubevirt/device-
plugin-manager/pkg/dpm

After registration the CEX device plug-in is ready for allocation requests forwarded from the kubelet
service. Such an allocation request is triggered by a crypto load pod requesting a CEX resource from the
config set. The allocation request is processed and creates:

• A new zcrypt device node and forwards it to the container.
• Sysfs shadow directories and makes sure they are mounted on to the correct place within the container.

In addition, there are some secondary tasks to do:

• APQN rescan: Every APQN_CHECK_INTERVAL (default is 30s) the available APQNs on the compute
node are checked. When there are changes, the plug-in reevaluates the list of available APQNs per
config set and reannounces the list of plug-in-devices to the Kubernetes system.

• CEX config map rescan: Every CRYPTOCONFIG_CHECK_INTERVAL (default is 120s) the crypto config
map is re-read. If the verification of the ConfigMap succeeds, the changes are re-evaluated and
eventually result in reannouncements to the Kubernetes system. If verification fails, an error message
Config Watcher: failed to verify new configuration! is shown. The plug-in continues to
run without CEX crypto configuration and is thus unable to satisfy allocation requests. For details see:
CEX configuration ConfigMap updates.

• Surveillance of pods with CEX resources allocated: Every PODLISTER_POLL_INTERVAL (default is 30s)
the list of pods, which have a CEX resource assigned, is examined. This is matched against the list of
resources, which are provided by the plug-in. For each allocation request the plug-in creates a zcrypt
device node and shadow sysfs directories. These resources must be removed when no longer needed:

– When the resources (zcrypt device node, shadow sysfs directories), which were created based on an
allocation request are not used any more (the pod using the related plug-in device has not been seen
any more) for more than RESOURCE_DELETE_UNUSED (default is 120s) seconds, these resources are
destroyed.

– When a zcrypt device node and the shadow sysfs directories, which were created based on an
allocation request have not been used (there was never seen a running pod with the related plug-in
device) for more than RESOURCE_DELETE_NEVER_USED (default 1800s) seconds, the zcrypt device
node and the shadow sysfs directories are destroyed.

16 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Allocation of CEX resources by containers

A container deployment can request one CEX resource from a CEX config set by specifying a resource
statement as part of the container specification.

...
spec:
 containers:
 - image ...
 ...
 resources:
 limits:
 cex.s390.ibm.com/<config_set_name>: 1
 ...

For example, a container requesting a CEX resource from the config set CCA_for_customer_1 from the
sample ConfigMap in appendix Sample CEX resource Configuration Map needs the following container
specification:

...
spec:
 containers:
 - image ...
 ...
 resources:
 limits:
 cex.s390.ibm.com/CCA_for_customer_1: 1
 ...

Sample CEX crypto load container in the appendix is a simple but complete sample yaml file for a
customer load with CEX resource allocation.

When the Kubernetes system tries to run an instance of this container it recognizes the resource
limitation. The CEX device plug-in instances should have registered plug-in-devices for each of the
config sets, among them plug-in-devices for the CCA_for_customer_1. The Kubernetes system does
the bookkeeping for all these devices and therefore knows, which devices are free and which devices
were announced by the CEX device plug-in instances. The Kubernetes system chooses one compute node
where a CEX device plug-in runs that had announced one of the free plug-in devices and forwards an
allocation request to this plug-in.

The plug-in instance running on the compute node where the container gets applied, prepares the CEX
resource and the sysfs shadow directories for the container, returns these to the Kubernetes system,
and then the container is started. The container will have a device node /dev/z90crypt customized to
have access to the allocated APQN and a customized /sys/devices/ap and /sys/bus/ap providing a
limited view of the AP/zcrypt world.

When the container finally finishes, the CEX device plug-in on the compute node spots this, cleans up
the allocated resources, and the Kubernetes system marks the plug-in-device as unused. The allocated
resources which are cleaned up are the customized additional zcrypt device node and the sysfs shadow
dirs.

Frequently asked questions
Q: What happens when all CEX resources within one config set are assigned to running containers and a
new pod/container requesting a CEX resource from this config set is started?

A: Kubernetes will try to start the pod/container but the pod state is shown as pending. A kubectl
describe shows the reason:

Warning FailedScheduling 2m31s default-scheduler 0/6 nodes are available: 1
 Insufficient cex.s390.ibm.com/<cex_config_set_name> ...

© Copyright IBM Corp. 2022, 2024 17

When finally a CEX resource from the config set becomes available, the pending pod will get started
automatically by the Kubernetes system.

Q: What happens when a CEX resource from a not existing or not defined CEX config set is requested by a
pod/container?

A: The Kubernetes cluster behaves similar to the out-of-CEX-resources within a config set case. The pod
is in pending state until a config set with this name and a free CEX resource for this set come into
existence. Then the CEX resource is assigned and the container started.

Q: I'd like to assign more than one APQN to the container to provide a backup possibility for the running
application. Is this supported?

A: Currently, exactly one CEX resource can be requested by one container. The idea for backups for
cluster applications is to schedule more pods/containers. This keeps the application within a container
simple and easy and delegates the backup and performance issues to the cluster system.

Q: I'd like to package an application into a container that uses different kinds of CEX resources, for
example one CCA and one EP11 APQN. So I'd like to assign two APQNs from different config sets to one
container. Does that work?

A: No. Currently, exactly one CEX resource can be assigned to one container. This is only a limit to
containers, but not to pods. As a pod can contain several containers each container can request one CEX
resource from any config set. Split your application into units using only one type of CEX resource and
package each unit into it's own container. Now your pod load runs as multiple containers with each having
it's own CEX resource.

18 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Technical Concepts and Limitations

CEX configuration ConfigMap updates
From a cluster administration point of view it is desirable to change the CEX configuration in the cluster-
wide crypto ConfigMap. For example, to add or remove CEX resources within a config set or even add or
remove whole crypto config sets.

This can be done during regular cluster uptime but with some carefulness. Every
CRYPTOCONFIG_CHECK_INTERVAL (default is 120s) the crypto ConfigMap is re-read by all the CEX
device plug-in instances. The new ConfigMap is verified and if valid, activated as the new current
ConfigMap. On successful ConfigMap re-read the plug-in logs a message:

 CryptoConfig: updated configuration

If the verification of the new CEX ConfigMap fails, the CEX device plug-in logs an error message. One
reason for the verification failure might be the failure to read or parse the ConfigMap resulting in error logs
like:

 CryptoConfig: Can't open config file ...

or

 CryptoConfig: Error parsing config file ...

If the verification step fails, the following message is displayed:

 Config Watcher: failed to verify new configuration!

These failures result in running the plug-in instances without any configuration map.

The log messages appear periodically until yet another update of the ConfigMap is finally accepted as
valid.

Note: After an update of a configuration map, the cluster needs some time (typically up to 2 minutes) to
propagate the changes to all nodes. Another, potentially faster, way to update the configuration map for
the plug-in is to restart the rollout of the deployment via:

 kubectl rollout restart daemonset <name-of-the-cex-plug-in-daemonset> -n cex-device-plugin

This triggers a restart of each instance of the daemonset in a coordinated way by Kubernetes.

Overcommitment of CEX resources
By default, a CEX resource (an APQN) maps to exactly one Kubernetes plug-in-device. This is the
administration unit known by Kubernetes and in fact a container requests such a plug-in device.

By default, the CEX device plug-in maps each available APQN to one plug-in device and as a result one
APQN is assigned to a container requesting a CEX resource.

The CEX device plug-in can provide more than one plug-in-device per APQN, which allows some
overcommitment of the available CEX resources.

Setting the environment variable APQN_OVERCOMMIT_LIMIT to a value greater than 1 (default is 1)
allows to control how many plug-in devices are announced to the Kubernetes system for each APQN.
For example, with three APQNs available within a config set and an overcommit value of 10, 30 CEX
plug-in devices are allocatable and up to 30 containers could successfully request a CEX resource. The
environment variable is specified in the DaemonSet YAML file via the env parameter.

© Copyright IBM Corp. 2022, 2024 19

You can specify the optional ConfigSet parameter "overcommit" to control the overcommit limit at config
set level. If this parameter is omitted, the value defaults to the environment variable.

Eventually, more than one container will share one APQN with overcommitment enabled. This exposes no
security weakness, but might result in lower performance for the crypto operations within each container.

Note: Dynamically changing the overcommit value, either by changing the environment variable, or by
changing the overcommit parameter of a config set, changes the number of available CEX resources.
If the number of available resources increases, containers waiting for resources might be able to run.
Whereas already running containers continue to run, even if a used resource is no more available because
of the decreased number of available resources. Due to lack of resources, those containers cannot be
restarted.

The device node z90crypt
On a compute node, the device node /dev/z90crypt offers access to all zcrypt devices known to the
compute running as a KVM guest. The application of a container, which requests a CEX resource will also
see and use the device node /dev/z90crypt. However, what is visible inside the container is in fact a
newly constructed z90crypt device with limited access to only the APQN assigned.

On the compute node, these constructed z90crypt devices are visible in the /dev directory as
device nodes zcrypt-apqn-<card>-<domain>-<overcommitnr>. With the start of the container
the associated device node on the compute node is mapped to the /dev/z90crypt device inside the
container.

These constructed z90crypt devices are created on the fly with the CEX allocation request triggered with
the container start and deleted automatically when the container terminates.

With version 1 of the CEX device plug-in, the constructed zcrypt device nodes limit access to exact one
APQN (adapter, usage domain, no control domain), allowing all ioctls.

Note: These settings allow both usage and control actions, which are restricted to the underlying APQN
with the /dev/z90crypt device that is visible inside the container, even with overcommited plug-in
devices.

The shadow sysfs
The CEX device plug-in manipulates the AP part of the sysfs that a container can explore. The sysfs
tree within a container contains two directories related to the AP/zcrypt functionality: /sys/bus/ap
and /sys/devices/ap.

Tools working with zcrypt devices, like lszcrypt or ivp.e, need to see the restricted world, which is
accessible via the /dev/z90crypt device node within the container.

The CEX device plug-in creates a shadow sysfs directory tree for each of these paths on the
compute node at /var/tmp/shadowsysfs/<plug-in-device>. With the start of the container, both
directories /sys/bus/ap and /sys/devices/ap are overlayed (overmounted) with the corresponding
shadow directory on the compute node.

These shadow directory trees are simple static files that are created from the original sysfs entries on the
compute node. They loose their sysfs functionality and show a static view of a limited AP/zcrypt world.
For example, /sys/bus/ap/ap_adapter_mask is a 256 bit field listing all available adapters (crypto
cards). The manipulated file that appears inside the container only shows the adapter that belongs to
the assigned APQN. All load and counter values in the corresponding sysfs attributes, for example /sys/
devices/ap/card<xx>/<xx>.<yyyy>/request_count, show up as 0 and don't get updates when a
crypto load is running.

This restricted sysfs within a container should be sufficient to satisfy the discovery tasks of most
applications (lszcrypt, ivp.e, opencryptoki with CCA or EP11 token) but has limits. For example,
chzcrypt will fail to change sysfs attributes, offline switch of a queue will not work, and applications
inspecting counter values might get confused.

20 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

An administrator logged into a Kubernetes compute node could figure out the assignment of a CEX
resource and a requesting container. For example, by reading the log messages from the plug-ins. Without
overcommitment the counters of an APQN on the compute node reflect the crypto load of the associated
container and lszcrypt can be used.

Hot plug and hot unplug of APQNs
The CEX device plug-in monitors the APQNs available on the compute node by default every 30 seconds.
This comprises the existence of APQNs and their online state. When the compute node runs as a KVM
guest it is possible to live modify the devices section of the guest's xml definition at the KVM host, which
results in APQNs appearing or disappearing. The AP bus and zcrypt device driver inside the Linux system
recognizes this as hot plug or unplug of crypto cards and/or domains.

It is also possible to directly change the online state of a card or APQN within a compute node. For
example, an APQN might be available but switched to offline by intention by an system administrator.

A dialog on the HMC offers the possibility to configure off and configure on CEX cards assigned to an LPAR.
A CEX card in config off state is still visible in the LPAR and thus in the compute node but similar to the
offline state no longer usable.

All this might cause the CEX device plug-in to deal with varying CEX resources. The plug-in code is
capable of handling hot plug, hot unplug, the online state changes of CEX resources, and reports changes
in the config set to the Kubernetes system. Because of this handling, APQNs can be included into the CEX
config sets, which might not exist at the time of first deployment of the CEX configuration map. At a later
time the card is hot plugged and assigned to the running LPAR. The cluster will spot this and make the
appearing APQNs, which are already a member in a config set, available for allocation requests.

The handling of the online state is done by reporting the relevant plug-in devices as healthy (online) or
unhealthy (offline). An unhealthy plug-in device is not considered when a CEX resource allocation takes
place.

Note: It might happen that a CEX resource becomes unusable (hot unplug or offline state) but is assigned
to a running container. The plug-in recognizes the state change, updates the bookkeeping, and reports
this to the Kubernetes system but does not stop or kill the running container. It is assumed that the
container load fails anyway because the AP bus or zcrypt device driver on the compute node reacts with
failures on the attempt to use such a CEX resource device. A well designed cluster application terminates
with a bad return code causing Kubernetes to re-establish a new container, which will claim a CEX
resource and the situation recovers automatically.

SELinux and the Init Container
The CEX device plug-in prepares various files and directories that become mounted to the pod at an
allocation request. Among those mounts are the directories descibed under The shadow sysfs. These
folders are generated on the compute node and mounted into the new pod. In some cases, special
actions are needed for such a mount to be accessible inside the newly created pod. For example, SELinux
where the folder, or one of its parent folders, must have the appropriate SELinux label. Other security
mechanisms might have different requirements.

Because the security mechanisms and their configuration depend on the cluster instance, the CEX device
plug-in does not provide any support for such mechanisms. Instead, in the SELinux case, an Init Container
can be used to set the correct label on the shadow sysfs root folder /var/tmp/shadowsysfs that
contains all the sub-folders that are mapped into pods. See Sample CEX device plug-in daemonset yaml
for an example of a daemonset deployment of the CEX device plug-in that contains an init container to set
up /var/tmp/shadowsysfs for use in a SELinux-enabled environment.

Technical Concepts and Limitations 21

Limitations

Namespaces and the project field
The project field of a CEX config set should match the namespace of the container requesting a member
of this set. This results in only blue applications being able to allocate blue APQNs from the blue config
set.

Unfortunately, the allocation request forwarded from the Kubernetes system to the CEX device plug-in
does not provide any namespace information. Therefore, the plug-in is not able to check the namespace
affiliation.

When the container runs, the surveillance loop of the CEX device plug-in detects this mismatch and
displays a log entry:

PodLister: Container <aaa> in namespace <bbb> uses a CEX resource <ccc> marked for project
<ddd>!.

This behavior can be a security risk as this opens the possibility to use the HSM of another group of
applications. However, to really exploit this, more is needed. For example, a secure key from the target to
attack or the possibility to insert a self made secure key into the target application.

As a workaround, you can set quotas for all namespaces except for the one that is allowed to use the
resource. See the following example:

 apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: cex-blue-quota-no-red
 namespace: blue
 spec:
 hard:
 requests.cex.s390.ibm.com/red: 0
 limits.cex.s390.ibm.com/red: 0

This yaml snippet restricts the namespace blue to allocate zero CEX resources from the crypto config set
cex.s390.ibm.com/red. The result is that all containers, which belong to the blue namespace, are not able
to allocate red CEX resources any more.

Sample CEX quota restriction script in the appendix shows a bash script that produces a yaml file, which
establishes these quota restrictions.

22 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Prometheus Support

Starting with version 1.1.0 the CEX device plug-in provides metrics data about the CEX device resources.
The metrics are offered in a Prometheus compatible way.

The following metrics are exposed:

• Metric cex_plugin_plugindevs_available:

A vector of integer literals showing the number of CEX plug-in devices currently available, grouped by
configset name.

For example:

TYPE cex_plugin_plugindevs_available gauge
cex_plugin_plugindevs_available{setname="Accels"} 6
cex_plugin_plugindevs_available{setname="CCA_for_customer_1"} 2
cex_plugin_plugindevs_available{setname="CCA_for_customer_2"} 4
cex_plugin_plugindevs_available{setname="EP11_for_customer_1"} 2
cex_plugin_plugindevs_available{setname="EP11_for_customer_2"} 3`

• Metric cex_plugin_plugindevs_used:

A vector of integer literals showing the number of CEX plug-in devices currently in use, grouped by
configset name.

For example:

TYPE cex_plugin_plugindevs_used gauge
cex_plugin_plugindevs_used{setname="Accels"} 1
cex_plugin_plugindevs_used{setname="CCA_for_customer_1"} 2
cex_plugin_plugindevs_used{setname="CCA_for_customer_2"} 1
cex_plugin_plugindevs_used{setname="EP11_for_customer_1"} 0
cex_plugin_plugindevs_used{setname="EP11_for_customer_2"} 3

• Metric cex_plugin_request_counter:

A vector of integer literals showing the sum of request counter values of all CEX resources managed by
the CEX device plug-in daemonset, grouped by configset name.

For example:

TYPE cex_plugin_request_counter gauge
cex_plugin_request_counter{setname="Accels"} 44700
cex_plugin_request_counter{setname="CCA_for_customer_1"} 36505
cex_plugin_request_counter{setname="CCA_for_customer_2"} 40428
cex_plugin_request_counter{setname="EP11_for_customer_1"} 24127
cex_plugin_request_counter{setname="EP11_for_customer_2"} 21655

• Metric cex_plugin_total_plugindevs_available:

A simple integer literal showing the total number of CEX plug-in devices currently available in in
the cluster. This metric gives the sum of all cex_plugin_plugindevs_available over all crypto
configsets and is provided only for convenience.

For example:

TYPE cex_plugin_total_plugindevs_available gauge
cex_plugin_total_plugindevs_available 17

• Metric cex_plugin_total_plugindevs_used:

A simple integer literal showing the total number of CEX plug-in devices currently in use in the cluster.
This metric gives the the sum of all cex_plugin_plugindevs_used over all crypto configsets and is
provided only for convenience.

© Copyright IBM Corp. 2022, 2024 23

For example:

TYPE cex_plugin_total_plugindevs_used gauge
cex_plugin_total_plugindevs_used 7

• Metric cex_plugin_total_request_counter:

A simple integer literal showing the total sum of all request counter values of all
CEX resources managed by all CEX plug-in instances. This metric gives the sum of all
cex_plugin_request_counter over all crypto configsets and is provided only for convenience.

For example:

TYPE cex_plugin_total_request_counter gauge
cex_plugin_total_request_counter 167415

Sample use cases that exploit these metrics are shown at the end of this section in paragraph Some
sample use cases.

Details about the Prometheus support
The CEX Prometheus exporter is a Prometheus exporter that acts as a proxy between the CEX device
plug-in instances running on each cluster node and the Prometheus server, or a similar service. The
CEX Prometheus exporter collects and aggregates the raw metrics data from the plug-ins and serves as
Prometheus client for the metrics monitoring service.

Figure 1. Plug-in and Exporter

The CEX Prometheus exporter runs as a pod inside the cluster and communicates with the CEX device
plug-in instances via a cluster network through the cex-prometheus-exporter-collector-service. The CEX
device plug-in instances use the cluster lookup for the metrics collector service and publish their metrics
contributions to the corresponding endpoint.

The Prometheus server, or any other compatible monitoring service, has to be made aware of the new
scrape target. This is done with a ServiceMonitor registration and the cex-prometheus-exporter-service.

24 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Note: The service port 9939 used here is registered at Prometheus_default port allocations and should
not need any adjustment.

Setting up the Prometheus support for the CEX device plug-in
To provide the CEX Prometheus metrics the CEX Prometheus exporter needs to run as another pod.

The prebuilt CEX device plug-in image comes with the following integrated applications:

• The cex-plugin application providing the CEX device plug-in functionality
• The Prometheus exporter application cex-prometheus-exporter

To specify which application to use, add the command parameter to the config yaml file.

• command: ["/work/cex-plugin"] starts the CEX device plug-in
• command: ["/work/cex-prometheus-exporter"] starts the CEX Prometheus exporter

If command is not specified, the default entrypoint application /work/cex-plugin is executed.

The appendix contains sample yaml deployments for the CEX device plug-in daemonset and the CEX
Prometheus exporter pod. The CEX Prometheus exporter is a simple application, which does not require
any extended capabilities, secrets, or special volume mounts. The CEX Prometheus exporter is not
required to run permanently, but if stopped the ability to fetch metrics data for the CEX resources is lost.

The CEX device plug-in github repository provides ready-to-use deployment samples for kubectl via the
kustomize extension.

The cex_prom_exporter_pod.yaml yaml file provides a pre-customized deployment for the CEX
Prometheus exporter pod.

In addition to the CEX Prometheus exporter pod, two service definitions are required to permit TCP traffic.
Pre-customized deployments are provided in the CEX github repository:

• For traffic between the CEX device plug-in instances and the exporter, the cex-prometheus-exporter-
collector-service yaml file.

• For traffic between the Prometheus server and the exporter, the cex-prometheus-exporter-service yaml
file.

If a new Prometheus client is available for retrieval of metrics, the Prometheus server needs to get
informed. A sample ServiceMonitor definition for the CEX Prometheus exporter is provided in the appendix
Sample CEX Prometheus exporter servicemonitor yaml.

The github repository file cex_prom_exporter_prometheus_servicemonitor.yaml provides pre-
customized deployment for the ServiceMonitor.

By default the CEX Prometheus exporter pod, the two ClusterIP services, and the ServiceMonitor all
live in the cex-plugin-device namespace. However, an experienced administator can change the names,
the port settings, and the namespace preselection. The only requirement is that the CEX device plug-in
instances are able to reach the CEX Prometheus exporter pod to push their raw data. In addition, the
monitoring system needs to contact the CEX Prometheus exporter pod to pull the metrics. For details see
Environment variables.

Sample Prometheus use cases for the CEX resources
• Prometheus query:

`rate(cex_plugin_total_request_counter[60s])`

The diagram that is generated by the query provides a basic overview of the CEX crypto activities within
the cluster over time. It shows the summarized CEX crypto counters without differentiation about CEX
config sets. If you are an experienced administator, you can use this query to discover unexpected
crypto counter rates.

Prometheus Support 25

https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin/tree/main/deployments
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin/blob/main/deployments/rhocp-update/cex_prom_exporter_pod.yaml
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin/blob/main/deployments/rhocp-update/cex_prom_exporter_prometheus_servicemonitor.yaml

Example output:

Figure 2. cex_plugin_total_request_counter
• Prometheus query:

`30 * rate(cex_plugin_request_counter[30s])`

The diagram that is generated by the query shows the rate of the request counters grouped by crypto
config sets to provide a basic overview about the use of the individual config set CEX resources over
time. However, this query can only express a relative utilization because a request counter increase can
have various causes. For example, the cause could be a lightweight crypto operation where 100000s of
operations per second per CEX resource are possible or the result of a heavyweight operation with RSA
4K key generations where only about 1000 operations per second per CEX resource are possible.

Example output:

Figure 3. rate cex_plugin_request_counter
• Prometheus query:

`30 * rate(cex_plugin_plugindevs_used[30s])`

The diagram that is generated by the query shows the rate of used CEX plug-in devices over time
differentiated by CEX config set. The diagram gives some hints how often and how long CEX resources
of a certain set are used and can be used to adjust the provisioning of APQNs in the cluster.

Example output:

26 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Figure 4. rate cex_plugin_plugindevs_used
• Prometheus query:

`100 * cex_plugin_plugindevs_used / cex_plugin_plugindevs_available`

The diagram that is generated by the query shows the utilization of the CEX plug-in devices in percent
by calculating the fraction of used versus available CEX plug-in devices. A value of 100% means that all
available CEX plug-in devices within this crypto config set are in use. Thus when a new container load
requests a CEX resource of the given type, it is delayed until a CEX resource is released by a terminating
container.

You can use the results to define a threshold when you configure alert rules for the Prometheus server.
For example, you can define the threshold to fire when the 90% limit is overshoot for more than
2 minutes. The Prometheus alert rule then triggers an action depending on the configuration of the
Alertmanager. For example, an email or SMS is sent to the cluster administrator, to indicate that the
number of CEX resourcees for this configset are not sufficient and more are needed.

Example output:

Figure 5. utilisation cex_plugin_plugindevs

Prometheus Support 27

Troubleshooting

This section provides information on diagnostics and troubleshooting.

If you experience issues with the CEX device plug-in, you can check the pod status, gather pod
diagnostics, and collect debugging data.

Prerequisites
You must log in as a user that belongs to a role with administrative privileges for the cluster. For example,
system:admin or kube:admin.

Verification
The CEX device plug-in runs as a daemonset in namespace cex-device-plugin.

The following query should list the CEX device plug-in daemonset:

$ kubectl get daemonsets -n cex-device-plugin
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
cex-plugin-daemonset 3 3 3 3 3 <none> 4d

The daemonset is realized as a pod with one container per each compute node.

To review the status of pods running in the CEX device plug-in and the kube-system namespace, run the
following command:

$ kubectl get pods -n cex-device-plugin
NAME READY STATUS RESTARTS AGE
cex-plugin-daemonset-bfxt2 1/1 Running 0 3d23h
cex-plugin-daemonset-bhhj8 1/1 Running 0 3d23h
cex-plugin-daemonset-bntsp 1/1 Running 0 3d23h

Verify that the pods are running correctly. There should be one pod per each compute node in status
Running. If one or more of the CEX device plug-in pods do not show up or are not showing a Running
status, you can collect diagnostic information.

To inspect the status of a pod in detail, use the describe subcommand, for example:

$ kubectl describe pod cex-plugin-daemonset-bfxt2 -n cex-device-plugin

When these requirements are fulfilled, ensure that you have a CEX resource configuration map, which
defines the CEX config sets deployed in namespace cex-device-plugin:

$ kubectl get configmap -n cex-device-plugin
NAME DATA AGE
...
cex-resources-config 1 4d2h
...

To verify if a configmap has been deployed, run kubectl describe on one of the plug-in pods. If no
configmap is deployed the output will show a message that the volume mount failed, for example:

MountVolume.SetUp failed for volume "cex-resources-conf" : configmap "cex-resources-config" not
found

If the CEX configmap is deployed and the CEX device plug-in instances are running, verify the available
and allocated CEX resources on each compute node:

$ kubectl describe nodes
...
Allocatable:

28 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

 ...
 cex.s390.ibm.com/Accel: 1
 cex.s390.ibm.com/CCA_for_customer_1: 3
 cex.s390.ibm.com/EP11_for_customer_2: 2
 cpu: 3500m
 ephemeral-storage: 15562841677
 ...
...
Allocated resources:
 Resource Requests Limits
 -------- -------- ------
 cpu 408m (11%) 0 (0%)
 memory 2213Mi (20%) 0 (0%)
 ephemeral-storage 0 (0%) 0 (0%)
 hugepages-1Mi 0 (0%) 0 (0%)
 cex.s390.ibm.com/Accel 0 0
 cex.s390.ibm.com/CCA_for_customer_1 1 1
 cex.s390.ibm.com/EP11_for_customer_2 0 0
 ...

Each CEX device plug-in pod provides log messages, which provide details that might explain a possible
failure or misbehavior. The logs of each of the CEX device plug-in instances can be extracted with the
following command sequence:

$ kubectl get pods -n cex-device-plugin --no-headers | grep cex-plugin-daemonset
cex-plugin-daemonset-p5j8h 1/1 Running 0 32m
cex-plugin-daemonset-qdz8r 1/1 Running 0 32m
cex-plugin-daemonset-zxwts 1/1 Running 0 32m
$ kubectl logs -n cex-device-plugin cex-plugin-daemonset-p5j8h
$ kubectl logs -n cex-device-plugin cex-plugin-daemonset-qdz8r
$ kubectl logs -n cex-device-plugin cex-plugin-daemonset-zxwts

Here are some important parts of a sample CEX device plug-in log shown with some explanations:

 1: 2022/06/07 14:05:18 Main: S390 k8s z crypto resources plugin starting
 2: 2022/06/07 14:05:18 Plugin Version: v1.0.2
 3: 2022/06/07 14:05:18 Git URL: https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin.git
 4: 2022/06/07 14:05:18 Git Commit: 40fae46c3d3aacff055d5f2fd7e1c580abc850b9

Line 2: CEX device plug-in version.

Line 3-4: Source code and commit id base for this CEX device plug-in application.

 5: 2022/06/07 14:05:18 Main: Machine id is 'IBM-3906-00000000000DA1E7'
 6: 2022/06/07 14:05:18 Ap: apScanAPQNs() found 4 APQNs: (6,51,cex6,accel,true),
(8,51,cex6,cca,true), (9,51,cex6,cca,true), (10,51,cex6,ep11,true)
 7: 2022/06/07 14:05:18 CryptoConfig: Configuration changes detected
 8: 2022/06/07 14:05:18 CryptoConfig: Configuration successful updated
 9: 2022/06/07 14:05:18 Main: Crypto configuration successful read
10: 2022/06/07 14:05:18 CryptoConfig (3 CryptoConfigSets):
11: 2022/06/07 14:05:18 setname: 'CCA_for_customer_1'
12: 2022/06/07 14:05:18 project: 'customer_1'
13: 2022/06/07 14:05:18 5 equvialent APQNs:
14: 2022/06/07 14:05:18 APQN adapter=4 domain=51 machineid='*'
15: 2022/06/07 14:05:18 APQN adapter=8 domain=51 machineid='*'
16: 2022/06/07 14:05:18 APQN adapter=9 domain=51 machineid='*'
17: 2022/06/07 14:05:18 APQN adapter=12 domain=51 machineid='*'
18: 2022/06/07 14:05:18 APQN adapter=13 domain=51 machineid='*'
19: 2022/06/07 14:05:18 setname: 'EP11_for_customer_2'
20: 2022/06/07 14:05:18 project: 'customer_1'
21: 2022/06/07 14:05:18 3 equvialent APQNs:
22: 2022/06/07 14:05:18 APQN adapter=5 domain=51 machineid='*'
23: 2022/06/07 14:05:18 APQN adapter=10 domain=51 machineid='*'
24: 2022/06/07 14:05:18 APQN adapter=11 domain=51 machineid='*'
25: 2022/06/07 14:05:18 setname: 'Accel'
26: 2022/06/07 14:05:18 project: 'default'
27: 2022/06/07 14:05:18 3 equvialent APQNs:
28: 2022/06/07 14:05:18 APQN adapter=3 domain=51 machineid='*'
29: 2022/06/07 14:05:18 APQN adapter=6 domain=51 machineid='*'
30: 2022/06/07 14:05:18 APQN adapter=7 domain=51 machineid='*'

Line 6: The list of APQNs found by the CEX device plug-in instance on the compute node.

Troubleshooting 29

Lines 10-30: Condensed view of the CEX resource configuration.

...
40: 2022/06/07 14:05:18 PodLister: Start()
41: 2022/06/07 14:05:18 Plugin: Register plugins for these CryptoConfigSets: [Accel
CCA_for_customer_1 EP11_for_customer_2]
42: 2022/06/07 14:05:18 Plugin: Announcing 'cex.s390.ibm.com' as our resource namespace
43: 2022/06/07 14:05:18 Plugin: NewPlugin('EP11_for_customer_2')
44: 2022/06/07 14:05:18 Plugin['EP11_for_customer_2']: Start()
45: 2022/06/07 14:05:18 Plugin: Announcing 'cex.s390.ibm.com' as our resource namespace
46: 2022/06/07 14:05:18 Plugin: NewPlugin('Accel')
47: 2022/06/07 14:05:18 Plugin['Accel']: Start()
48: 2022/06/07 14:05:18 Plugin: Announcing 'cex.s390.ibm.com' as our resource namespace
49: 2022/06/07 14:05:18 Plugin: NewPlugin('CCA_for_customer_1')
50: 2022/06/07 14:05:18 Plugin['CCA_for_customer_1']: Start()
51: 2022/06/07 14:05:18 Plugin['Accel']: Found 1 eligible APQNs: (6,51,cex6,accel,true)
52: 2022/06/07 14:05:18 Plugin['Accel']: Overcommit not specified in ConfigSet, fallback to 1
53: 2022/06/07 14:05:18 Plugin['Accel']: Derived 1 plugin devices from the list of APQNs
54: 2022/06/07 14:05:18 Plugin['EP11_for_customer_2']: Found 1 eligible APQNs:
(10,51,cex6,ep11,true)
55: 2022/06/07 14:05:18 Plugin['EP11_for_customer_2']: Overcommit not specified in ConfigSet,
fallback to 1
56: 2022/06/07 14:05:18 Plugin['EP11_for_customer_2']: Derived 1 plugin devices from the list
of APQNs
57: 2022/06/07 14:05:18 Plugin['CCA_for_customer_1']: Found 2 eligible APQNs:
(8,51,cex6,cca,true), (9,51,cex6,cca,true)
58: 2022/06/07 14:05:18 Plugin['CCA_for_customer_1']: Overcommit not specified in ConfigSet,
fallback to 1
59: 2022/06/07 14:05:18 Plugin['CCA_for_customer_1']: Derived 2 plugin devices from the list of
APQNs
...

Lines 51, 54, 57: List of APQNs from the different CEX config sets that have been found on the compute
node and are allocatable.

The following example shows a real allocation by a container:

...
70: 2022/06/07 14:17:03 Plugin['CCA_for_customer_1']:
Allocate(request=&AllocateRequest{ContainerRequests:
 []*ContainerAllocateRequest{&ContainerAllocateRequest{DevicesIDs:
[apqn-9-51-0],},},})
71: 2022/06/07 14:17:03 Plugin['CCA_for_customer_1']: creating zcrypt device node 'zcrypt-
apqn-9-51-0'
72: 2022/06/07 14:17:03 Zcrypt: Successfully created new zcrypt device node 'zcrypt-apqn-9-51-0'
73: 2022/06/07 14:17:03 Zcrypt: simple node 'zcrypt-apqn-9-51-0' for APQN(9,51) created
74: 2022/06/07 14:17:03 Shadowsysfs: shadow dir /var/tmp/shadowsysfs/sysfs-apqn-9-51-0 created
75: 2022/06/07 14:17:03 Plugin['CCA_for_customer_1']: Allocate()
response=&AllocateResponse{ContainerResponses:

[]*ContainerAllocateResponse{&ContainerAllocateResponse{Envs:map[string]string{},Mounts:
[]*Mount{&Mount{ContainerPath:/sys/bus/ap,HostPath:/var/tmp/shadowsysfs/
sysfs-apqn-9-51-0/bus/ap,ReadOnly:true,},&Mount{ContainerPath:/sys/devices/
ap,HostPath:/var/tmp/shadowsysfs/sysfs-apqn-9-51-0/devices/ap,ReadOnly:true,},},Devices:
[]*DeviceSpec{&DeviceSpec{ContainerPath:/dev/z90crypt,HostPath:/dev/zcrypt-
apqn-9-51-0,Permissions:rw,},},Annotations:map[string]string{},},},}
...

About every 30 seconds the list of running containers with allocated CEX resources is listed:

...
80: 2022/06/07 14:47:18 PodLister: 1 active zcrypt nodes
81: 2022/06/07 14:47:18 PodLister: 1 active sysfs shadow dirs
82: 2022/06/07 14:47:18 PodLister: Container 'cex-testload-1' in namespace 'default' uses CEX
resource 'apqn-9-51-0' marked for project 'customer_1'!!!
83: 2022/06/07 14:47:18 PodLister: 1 active containers with allocated cex devices
...

When containers terminate with an allocated CEX resource there is a cleanup step, which is reported in
the log as follows:

...
90: 2022/06/07 14:52:18 PodLister: 1 active zcrypt nodes
91: 2022/06/07 14:52:18 PodLister: 1 active sysfs shadow dirs
92: 2022/06/07 14:52:18 PodLister: 0 active containers with allocated cex devices
93: 2022/06/07 14:52:18 PodLister: deleting zcrypt node 'zcrypt-apqn-9-51-0': no container use

30 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

since 120 s
94: 2022/06/07 14:52:18 PodLister: deleting shadow sysfs 'sysfs-apqn-9-51-0': no container use
since 120 s
...

Capturing debug data for support
If you submit a support case, provide debugging data. Describe the failure and the expected behavior
and collect the logs of all CEX device plug-in instances together with the currently active CEX resource
configuration map. Optionally, you can include the output of kubectl describe nodes. Be careful
when providing this node data as internals of the load on the cluster might be exposed.

For example, run following commands to collect the required information:

$ cd /tmp
$ for p in `kubectl get pods -n cex-device-plugin --no-headers | grep cex-plugin-daemonset |
awk '{print $1}'`; do \
kubectl logs -n cex-device-plugin $p >$p.log; done
$ kubectl get configmap -n cex-device-plugin cex-resources-config -o yaml >cex-resources-
config.yaml
$ kubectl describe nodes >describe_nodes.log
$ zip debugdata.zip cex-plugin-daemonset-*.log cex-resources-config.yaml describe_nodes.log
$ rm cex-plugin-daemonset-*.log cex-resources-config.yaml describe_nodes.log

Note: The CEX device plug-in does not have access to any cluster or application secrets. Therefore, only
administrative information, related to the APQNs that are managed by the plug-in, is logged. The logs
contain the name of the configuration sets and the name and namespace of pods that request and use
APQNs. Since no application, cluster, or company secrets are contained within the logs, it is safe to hand
over this logging information to technical support.

Troubleshooting 31

Migrating from kube-system to cex-device-plugin
namespace

This section describes how to move the CEX device plug-in from the kube-system namespace to its own
namespace cex-device-plugin.

Migration details
The migration basically corresponds to a re-installation of the CEX device plugin and the corresponding
CEX resource configuration in the new cex-device-plugin namespace.

NOTE: To prevent resource conflicts when two plug-ins try to manage the same device, you must
first remove the plug-in from the kube-system namespace. This will lead to a short interruption in
service such that pods with containers requesting a CEX resource cannot be scheduled. Already running
containers with allocated CEX resources will not be affected and continue to run.

To assist in the migration, download the deployment kustomize files from the CEX device plug-in github
repository and change to the download directory. With these files you can install the CEX devce plug-in
with a custom configuration in the new namespace cex-device-plugin.

The configuration map is the only part that has to be moved. Everything else can simply be deleted in the
kube-system namespace and freshly installed in the cex-device-plugin namespace. The kustomize
templates for installation can be used to directly install the CEX device plug-in with a custom configmap.

Migration sequence
Follow these steps for migration:

1. Download the deployment Kustomize files from the CEX device plug-in github repository and change
into the download directory.

2. Copy the cex_resources.json file content contained in the configuration map in the kube-system
namespace into deployments/configmap/cex_resources.json by running the following
command:

oc get cm -n kube-system cex-resources-config -o jsonpath="{.data['cex_resources\.json']}" >
deployments/configmap/cex_resources.json

3. Remove the old CEX device plug-in daemonset from the kube-system namespace by running the
following command:

oc delete daemonset cex-plugin-daemonset -n kube-system

Now, no new pods with containers requesting CEX devices can be created anymore.
4. Create the installation template by running the following command:

oc create -k deployments/rhocp-create

After successful installation, new pods with containers requesting CEX devices can be created and the
CEX device plug-in should be fully functional again.

5. Optionally, the cex-resources-config configmap in the kube-system namespace can be cleaned
up. It is no longer needed since the new copy in the cex-device-plugin namespace is used. To
delete the old configmap, run the following command:

oc delete cm cex-resources-config -n kube-system

32 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

Appendix

Sample CEX resource configuration map
apiVersion: v1
kind: ConfigMap
metadata:
 name: cex-resources-config
 namespace: cex-device-plugin
data:
 cex_resources.json: |
 {
 "cryptoconfigsets":
 [
 {
 "setname": "CCA_for_customer_1",
 "project": "customer-1",
 "cexmode": "cca",
 "overcommit": 3,
 "apqns":
 [
 {
 "adapter": 1,
 "domain": 6,
 "machineid": ""
 },
 {
 "adapter": 2,
 "domain": 6,
 "machineid": ""
 },
 {
 "adapter": 7,
 "domain": 6,
 "machineid": ""
 }
]
 },
 {
 "setname": "CCA_for_customer_2",
 "project": "customer-2",
 "cexmode": "cca",
 "overcommit": 4,
 "apqns":
 [
 {
 "adapter": 1,
 "domain": 11,
 "machineid": ""
 },
 ...
 {
 "adapter": 7,
 "domain": 11,
 "machineid": ""
 }
]
 },
 {
 "setname": "EP11_for_customer_1",
 "project": "customer-1",
 "cexmode": "ep11",
 "apqns":
 [
 {
 "adapter": 3,
 "domain": 6,
 "machineid": ""
 },
 ...
 {
 "adapter": 11,
 "domain": 6,
 "machineid": ""
 }

© Copyright IBM Corp. 2022, 2024 33

]
 },
 {
 "setname": "EP11_for_customer_2",
 "project": "customer-2",
 "cexmode": "ep11",
 "apqns":
 [
 {
 "adapter": 3,
 "domain": 11,
 "machineid": ""
 },
 ...
 {
 "adapter": 11,
 "domain": 11,
 "machineid": ""
 }
]
 },
 {
 "setname": "Accel",
 "project": "default",
 "cexmode": "accel",
 "overcommit": 5,
 "apqns":
 [
 {
 "adapter": 4,
 "domain": 6,
 "machineid": ""
 },
 ...
 {
 "adapter": 5,
 "domain": 6,
 "machineid": ""
 }
]
 }
]
 }

Sample CEX device plug-in daemonset yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: cex-plugin-daemonset
 namespace: cex-device-plugin
spec:
 selector:
 matchLabels:
 name: cex-plugin
 template:
 metadata:
 labels:
 name: cex-plugin
 spec:
 priorityClassName: system-cluster-critical
 serviceAccount: cex-plugin-sa
 serviceAccountName: cex-plugin-sa
 tolerations:
 - key: CriticalAddonsOnly
 operator: Exists
 # This Init Container defines settings for SELinux to enable the plug-in
 # to provide and modify a temporary file system. The file system can be
 # used to modify some sysfs entries for the container that uses CEX crypto
 # resources. If the compute nodes do not have SELinux enabled, the Init
 # Container is not needed.
 initContainers:
 - name: shadowsysfs
 image: 'registry.redhat.io/ubi8-minimal'
 command: ["/bin/sh"]
 args: ["-c", "mkdir -p -m 0755 /var/tmp/shadowsysfs && chcon -t
container_file_t /var/tmp/shadowsysfs"]
 securityContext:
 privileged: true

34 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

 volumeMounts:
 - name: vartmp
 mountPath: /var/tmp
 containers:
 - name: cex-plugin
 image: 'quay.io/ibm/ibm-cex-plugin-cm:latest'
 imagePullPolicy: Always
 securityContext:
 privileged: true
 command: ["/work/cex-plugin"]
 env:
 # provide NODENAME to the container
 - name: NODENAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 # logically overcommit (share) CEX resources (if >1)
 - name: APQN_OVERCOMMIT_LIMIT
 value: "1"
 volumeMounts:
 - name: device-plugin
 mountPath: /var/lib/kubelet/device-plugins
 - name: pod-resources
 mountPath: /var/lib/kubelet/pod-resources
 - name: vartmp
 mountPath: /var/tmp
 - name: dev
 mountPath: /dev
 - name: sys
 mountPath: /sys
 - name: cex-resources-conf
 # the cex_resources.json file is showing up in this dir
 mountPath: /config/
 volumes:
 # device-plugin gRPC needs this
 - name: device-plugin
 hostPath:
 path: /var/lib/kubelet/device-plugins
 # pod-resources lister gRPC needs this
 - name: pod-resources
 hostPath:
 path: /var/lib/kubelet/pod-resources
 # plugin shadow sysfs mounts need this
 - name: vartmp
 hostPath:
 path: /var/tmp
 - name: dev
 hostPath:
 path: /dev
 - name: sys
 hostPath:
 path: /sys
 # cluster wide crypto cex resources config
 - name: cex-resources-conf
 configMap:
 name: cex-resources-config

Sample CEX crypto load container
apiVersion: apps/v1
kind: Deployment
metadata:
 name: testload-cca-for-customer-1
 namespace: customer-1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: testload-cca-for-customer-1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: testload-cca-for-customer-1
 spec:
 containers:
 - image: 'bash'
 imagePullPolicy: Always

Appendix 35

 name: testload-cca-for-customer-1
 command: ["/bin/sh", "-c", "while true; do echo do-nothing-loop; sleep 30; done"]
 resources:
 limits:
 cex.s390.ibm.com/CCA_for_customer_1: 1

Sample CEX quota restriction script
#!/bin/bash

This script produces a yaml file with quota restrictions
for the cex cryptosets for each given namespace.
Apply the resulting yaml file and then only the namespace <nnn>
is allowed to allocate CEX resources from a crypto set
marked with project <nnn>.

createquota () {
 QF=quota-$1.yaml
 cat << EOF >> $QF
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: cex.$3
 namespace: $1
 spec:
 hard:
 requests.cex.s390.ibm.com/$2: 0
 limits.cex.s390.ibm.com/$2: 0
EOF
}

while ! test -z "$1"; do
 n=$1
 shift
 c=0
 echo "apiVersion: v1" > quota-$n.yaml
 echo "items:" >> quota-$n.yaml
 for s in `oc get cm cex-resources-config -n cex-device-plugin -o
jsonpath='{.data.cex_resources\.json}'
 | jq -r ".cryptoconfigsets | .[] | select(.project != \"$n\") | .setname"`; do
 c=$((c + 1))
 createquota $n $s $c
 done
 echo "kind: List" >> quota-$n.yaml
 echo "metadata: {}" >> quota-$n.yaml
 ## TODO: apply it
done

Sample CEX Prometheus exporter yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: cex-prometheus-exporter
 namespace: cex-device-plugin
spec:
 replicas: 1
 selector:
 matchLabels:
 app: cex-prometheus-exporter
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: cex-prometheus-exporter
 spec:
 serviceAccount: cex-prometheus-exporter-sa
 serviceAccountName: cex-prometheus-exporter-sa
 containers:
 - name: cex-prometheus-exporter
 image: 'quay.io/ibm/ibm-cex-plugin-cm:latest'
 imagePullPolicy: Always
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:

36 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

 drop: ["ALL"]
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 command: ["/work/cex-prometheus-exporter"]
 ports:
 - containerPort: 9939
 name: prommetrics
 - containerPort: 12358
 name: collector

Sample CEX Prometheus exporter collector service yaml
apiVersion: v1
kind: Service
metadata:
 name: cex-prometheus-exporter-collector-service
 namespace: cex-device-plugin
 labels:
 app: cex-prometheus-exporter
spec:
 type: ClusterIP
 selector:
 app: cex-prometheus-exporter
 ports:
 - name: collector
 port: 12358
 protocol: TCP
 targetPort: collector

Sample CEX Prometheus exporter servicemonitor yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: cex-prometheus-exporter
 namespace: cex-device-plugin
 labels:
 release: prometheus
spec:
 selector:
 matchLabels:
 app: cex-prometheus-exporter
 endpoints:
 - port: metrics
 interval: 15s
 scheme: http

Sample CEX Prometheus exporter service yaml
apiVersion: v1
kind: Service
metadata:
 name: cex-prometheus-exporter
 namespace: cex-device-plugin
 labels:
 app: cex-prometheus-exporter
spec:
 type: ClusterIP
 selector:
 app: cex-prometheus-exporter
 ports:
 - name: metrics
 port: 9939
 protocol: TCP
 targetPort: prommetrics

Appendix 37

Environment variables

Environment variables recognized by the CEX plug-in application
Name Default value Description

APQN_CHECK_INTERVAL 30 The interval in seconds to check
for the node APQNs available and
their health state. The minimum
is 10 seconds.

APQN_OVERCOMMIT_LIMIT 1 The overcommit limit, 1 defines
no overcommit. For details
see Overcommitment of CEX
resources

CEX_PROM_EXPORTER_COLLECT
OR_SERVICE_NAMESPACE

The namespace in which the CEX
Prometheus exporter will run. If
empty (the default) it is assumed
that CEX plug-in instances and
the CEX Prometheus exporter run
in the same namespace.

CEX_PROM_EXPORTER_COLLECT
OR_SERVICE_PORT

12358 The port number where the CEX
plug-in instances will contact
the CEX Prometheus exporter to
deliver their raw metrics data.

CEX_PROM_EXPORTER_COLLECT
OR_SERVICE

cex-prometheus-exporter-
collector-service

The name of the service where
the CEX plug-in instance will
contact the CEX Prometheus
exporter.

CRYPTOCONFIG_CHECK_INTERV
AL

120 The interval in seconds to check
for changes on the cluster-wide
CEX resource configmap. The
minimum is 120 seconds.

METRICS_POLL_INTERVAL 15 The interval in seconds to
internally poll base information
(like crypto counters) and update
the internal metrics data. The
minimum is 10 seconds.

NODENAME The name of the node where
the CEX device plug-in instance
runs. See the sample CEX plug-in
daemonset yaml to set up this
environment variable correctly.

PODLISTER_POLL_INTERVAL 30 The interval in seconds to
fetch and evaluate the pods
within the cluster, which have
CEX resources allocated. The
minimum is 10 seconds.

38 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

Name Default value Description

RESOURCE_DELETE_NEVER_USE
D

1800 The interval in seconds after
which an allocated CEX resource
requested by a starting pod
is freed when the pod never
came into the running state. The
minimum is 30 seconds.

RESOURCE_DELETE_UNUSED 120 The interval in seconds after
which an allocated CEX resource
is freed when the pod vanished
from the running pods list. The
minimum is 30 seconds.

SHADOWSYSFS_BASEDIR /var/tmp/shadowsysfs The base directory for the
shadow sysfs. For details see The
shadow sysfs

Environment variables recognized by the CEX Pometheus exporter
application

Name Default value Description

COLLECTOR_SERVICE_PORT 12358 The metrics collector listener
port, where the CEX plug-in
instances will deliver their raw
metrics data.

PROMETHEUS_SERVICE_PORT 9939 The Prometheus client port
where the Prometheus server will
fetch the metrics from.

Appendix 39

Additional resources

• IBM z15 Configuration Setup

https://www.redbooks.ibm.com/abstracts/sg248860.html
• Linux on Z and LinuxONE

https://www.ibm.com/docs/en/linux-on-systems?topic=linux-z-linuxone
• CryptoCards

https://www.ibm.com/security/cryptocards
• System z Crypto and TKE Update

https://www.redbooks.ibm.com/abstracts/sg247848.html
• CCA - Common Cryptographic Architecture functional overview

https://www.ibm.com/docs/en/linux-on-systems?topic=cca-overview
• Kubernetes Device Plug-ins

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins
• Device Plugin Manager

https://pkg.go.dev/github.com/kubevirt/device-plugin-manager/pkg/dpm

40 Kubernetes device plug-in for IBM Crypto Express (CEX) cards Version 1.1.0: Installation and User Guide

https://www.redbooks.ibm.com/abstracts/sg248860.html
https://www.ibm.com/docs/en/linux-on-systems?topic=linux-z-linuxone
https://www.ibm.com/security/cryptocards
https://www.redbooks.ibm.com/abstracts/sg247848.html
https://www.ibm.com/docs/en/linux-on-systems?topic=cca-overview
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins
https://pkg.go.dev/github.com/kubevirt/device-plugin-manager/pkg/dpm

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM® in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive, MD-NC119

 Armonk, NY 10504-1785

 United States of America

For license inquiries regarding double-byte \(DBCS\) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing

 Legal and Intellectual Property Law

 IBM Japan Ltd.

 19-21, Nihonbashi-Hakozakicho, Chuo-ku

 Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product\(s\) and/or the program\(s\) described in
this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: \(i\) the
exchange of information between independently created programs and other programs \(including this
one\) and \(ii\) the mutual use of the information which has been exchanged, should contact

 IBM Director of Licensing

 IBM Corporation

© Copyright IBM Corp. 2022, 2024 41

 North Castle Drive, MD-NC119

 Armonk, NY 10504-1785

 United States of America

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

Portions of this information are provided under the Apache v2 license https://www.apache.org/licenses/
LICENSE-2.0.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
Helm™ and the Helm logo are trademarks of The Linux® Foundation, and use of them as a trademark
is subject to The Linux Foundation's Trademark Usage Guidelines at https://www.linuxfoundation.org/
trademark-usage/.

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Kubernetes® and the Kubernetes logo are registered trademarks of The Linux Foundation, and use
of them as a trademark is subject to The Linux Foundation's Trademark Usage Guidelines at https://
www.linuxfoundation.org/trademark-usage/.

Red Hat®, OpenShift®, and Ansible® are registered trademarks of Red Hat, Inc. or its subsidiaries in the
United States and other countries.

42 Notices

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.linuxfoundation.org/trademark-usage/
https://www.linuxfoundation.org/trademark-usage/
https://www.ibm.com/legal/copytrade
https://www.linuxfoundation.org/trademark-usage/
https://www.linuxfoundation.org/trademark-usage/

UNIX® is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

• Applicability

These terms and conditions are in addition to any terms of use for the IBM® website.
• Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM®.

• Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM®.

• Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM®, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 43

IBM®

Printed in USA

	Contents
	Figures
	Release Notes
	Version 1.0
	Features

	Version 1.0.2
	Features
	Resolved issues

	Version 1.1.0
	Features
	Resolved issues

	Known issues

	Inclusive language
	Introduction
	Overview

	Setting up the environment for the CEX device plug-in
	CEX resources on IBM Z and LinuxONE

	Getting started with the CEX device plug-in
	Creating and establishing a CEX resource configuration map
	Considerations for equally configured APQNs
	Basic parameters
	APQN parameters
	Establishing the CEX resource configuration map

	Installing and Configuring the CEX device plug-in
	Obtaining the CEX device plug-in
	Installing the CEX device plug-in
	Updating an Installation
	Installing the CEX device plug-in in details
	Further details on the CEX device plug-in

	Allocation of CEX resources by containers
	Frequently asked questions

	Technical Concepts and Limitations
	CEX configuration ConfigMap updates
	Overcommitment of CEX resources
	The device node z90crypt
	The shadow sysfs
	Hot plug and hot unplug of APQNs
	SELinux and the Init Container
	Limitations
	Namespaces and the project field

	Prometheus Support
	Details about the Prometheus support
	Setting up the Prometheus support for the CEX device plug-in
	Sample Prometheus use cases for the CEX resources

	Troubleshooting
	Prerequisites
	Verification
	Capturing debug data for support

	Migrating from kube-system to cex-device-plugin namespace
	Migration details
	Migration sequence

	Appendix
	Sample CEX resource configuration map
	Sample CEX device plug-in daemonset yaml
	Sample CEX crypto load container
	Sample CEX quota restriction script
	Sample CEX Prometheus exporter yaml
	Sample CEX Prometheus exporter collector service yaml
	Sample CEX Prometheus exporter servicemonitor yaml
	Sample CEX Prometheus exporter service yaml
	Environment variables
	Environment variables recognized by the CEX plug-in application
	Environment variables recognized by the CEX Pometheus exporter application

	Additional resources
	Notices
	Trademarks
	Terms and conditions for product documentation

